U.S. Department of Energy

Lawrence
Livermore
National
Laboratory

N=""

Preprint
UCRL-JC-147020

Evolving Neural Networks
for the Classification of
Galaxies

Erick Cantu-Paz and Chandrika Kamath

This article was submitted to
Genetic and Evolutionary Computation Conference, New York, NY

July 9-13, 2002

February 26, 2002

Approved for public release; further dissemination unlimited



DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information
P.O. Box 62, Oak Ridge, TN 37831
Prices available from (423) 576-8401
http:/ /apollo.osti.gov/bridge/

Available to the public from the
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd.,
Springfield, VA 22161
http:/ /www.ntis.gov/

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library
http:/ /www lInl.gov/tid/Library.html



Evolving Neural Networks for the Classificationof Galaxies
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Abstract

The FIRST surwy (Faint Images of the Ra-
dio Sky at Twentycm) is schedied to cover
10,M0 squae dagrees of the northernandsouth-
ern galactic caps. Until recently astronorers
classifiedradio-emitting galades through a vi-
sual inspectionof FIRST images. Besidesbe-
ing subjectve, prore to error and tedious, this
manué apprachis becomigy infeasible: upan
compldion, FIRSTwill include almosta million
galaxes. This paperdescribeghe applicationof
six methodsof evolving neuralnetworks (NNs)
with geneic algoithms (GAs) to identify bent-
doube galaies. The objedive is to demorstrate
thatGAs cansuccessfulladdresssomecomman
prodemsin the apgication of NNs to classifi-
cation prablems, suchas training the networks,
choaingappopriatenetwork topolagies,andse-
lectingrelevantfeatures Theresultsindicatethat
mostof themethalsperfom equallywell onour
data,but thefeatue selectiormethodgivessupe-
rior results.

1 INTRODUCTION

The Faint Imagesof the RadioSky at Twenty-cm (FIRST)

suney (Beckeretal., 19%) startedn 1998 with thegoalof

producingtheradioequivalentof the PalomarObsenratory

Sky Suney. Usingthe Very Large Array (VLA) attheNa-

tional Radio Astronany Obsenatory, FIRSTis scheduld

to cover morethan 10,00 squaredegreesof the northern

andsoutherrgalactic caps.At presentFIRST hascovered
abou 8,000squaredegrees,prodicing more than 32000

two-million pixelimages At athreshdd of 1 mJy, thereare
apprximately90radio-enitting galaxes, or radiosources,
in atypical squaredegree.

Radiosour@sexhibit awide rangeof morphologica types

that provide cluesto the sourcés class,emissionmecta-

nism, andpropertiesof the surroundingmedium Sources
with a bent-abuble mompholagy are of particlar interest
asthey indicatethe presencef clustersof galaxies, a key

projed within the FIRST suney. FIRST scientistscur

rently identify the bent-auble galaxiesby visual inspec-
tion, which—besi@s beingsubjectve, proneto errorand
tedious—ishecomimg increasiigly infeasibe asthe surey

grows.

Our goal is to bring automatio to the classificationof
galaxes usingtechniqiesfrom datamining, suchasneu-
ral networks. Neuralnetworks (NNs) have beenusedsuc-
cessfullyto classifyobjectsin mary astronorical apgica-
tions(Odevam etal., 1992;Storrie-Lombard etal., 199;
Adams& Woolley, 1994. However, the succesof NNs
largdy depemls on their arclitecture, their training algo-
rithm, andthe choiceof featuresusedin training Unfor-
tunately determiring the architectue of a neual network
is atrial-anderra processthelearningalgorithns mustbe
carefdly tunedto thedata;andtherelevarce of featuresto
the classificatiorprodem may not be knowvn a priori. Our
objective is to demorstratethat geretic algorithrs (GAs)
can successfullyaddress the topolog/ selection,training
and featureselectionprodems, resultingin accuratenet-
works with goad genealization abilities. This pape de-
scribesthe application of six combirationsof genetical-
gorithms andneura networks to the identificationof bent-
doube galaxes.

Thisstudyis oneof ahandfil thatcomparesdifferentmeth-
odsto evolve neual netson the samedomain (Robets &
Turen@, 19%; Siddiqi& Lucas, 1998 Gronress,1998. In
contrast with otherstudiesthatlimit their scopeto two or
threemethod, we usesix combinationsof GAs andNNs
and two measuref classificationaccurag to compae
the resultsof the evolved networks againsthanddesigne
networks. The conparisonssuggstthat someof the GA
andNN combinationsproducesignificantlymoreaccurate
classifierghanwe could obtaindesigring the networks by
hand



The next sectionoutlinesthe prodem of detectingbent-
doube galaxes in the FIRST data. Section3 describes
severalprevious combirationsof GAs andNNs. Section4
present®urexpeimentsandrepotstheresults.The pager
conclweswith our obserationsandplansfor future work.

2 FIRST SURVEY DATA

Figure 1 hasseveral exanples of radio sourcs from the
FIRST suney. While somebentdoulde galakies arerela-
tively simplein shapgexanples(a) and(b)), othes, such
astheonesin examges (e) and(f), canberathercompex.
Notethesimilarity betweerthe bert-doube in examge (a)
andthenonbent-aublein exanple (c).

Datafrom FIRSTareavailableonthe FIRSTwebsite(sun-
dogstsci.edu).Therearetwo forms of dataavailable: im-
agemapsanda catalog. Theimagesin figure 1 areclose-
upsof galaxies.Thecatalog(Whiteetal.,1997 is obtainel
by fitting two-dimersional Gaussian$o eachradio source
onanimagemap.Eachentryin the catalogcorrespadsto
asingleGaussian.

We decida that, initially, we would identify the radio
sourcesandextractthefeaturesusingonly thecatalog.The
astrononersexpectedthat the catalogwasa goodappox-
imationto all but the mostcomple of radio sourcesand
severalof thefeatureghey thoudht wereimportantin iden-
tifying bentdoubles were easily calculatedfrom the cata-

log.

We identified the featues for the bent-duble prodem
throwgh extensve corversationswith FIRST astronorers.
Whenthey justified their decisionsof identifying a radio
sourceas a bentdouble they placedgreatimportanceon
spatialfeatures suchas distancesand angles. Frequatly,
the astronaners would charaterize a bent-auble as a
radio-emitting “core” with oneor moreadditicnal compe
nentsatvariousangles.

In the past,we have conentratedour work on instances
describedy threecatalogentries,becausave have more

labeledexamges of this type. Our previous experience
with this datasuggestedhat the bestaccuaciesare usu-

ally achieved using featuresextractedconsicering triplets

of catalogentries(as opposedto pairs or single entries).
Therebre, in the remainde of this paperwe focuson the

20triplet featureshatwe extracted. A full list of features
is describectlsavhereFoda etal. (2000).

Unfortunately our training setis relatively small, contain
ing 195exanplesfor thethree-céalogentrysourcesSince
the bent-and nonbentdoubles mustbe manuallylabeled
by FIRST scientists putting togethe an adeaatetraining
setis nondrivial. Moreover, scientistsare usuallysubjec-
tive in their labeling of galaxies,andthe astronmnersof-

tendisagrean the hardto-classifycases.Thereis alsono
ground truth we canuseto verify our results. Thisimplies
thatthetraining setitself is not very accuate,andthereis
alimit to theaccuray we canobtain

Among the 195 labeledexamges of 3-enty sources28
arenonbentand167arebentdoube galaxies.Thisunkal-
anceddistribution in the training setpresentgproblemsin
estimatingheaccurag of theNNs, whicharediscussedh
sectiord4.

3 GENETIC NEURAL NETWORKS

Geneticalgorithmsandneual networks have beenusedto-
getherin several ways. In particdar, GAs have beenusedo
searchor theweightsof thenetwork, or to selectthe most
relevart featuresof the training data. GAs have alsobeen
usedo desigrthestructue of thenetwork. It is well knowvn
thatto solve nonlinearly separale prodems,the network
musthave atleastonelayerbetweertheinputsandoutputs;
but deternining the numker andthe sizeof the hiddenlay-
ersis mostlyamatterof trial anderror. GAshavebeenused
to searchor theseparaneters,aswell asfor the patternof
conrectionsandfor develgpmentalinstructionso geneate
anetwork. Theinterestedreademay consut the reviews
by Branke (1999, Schafer (199) andYao (1999).

3.1 TRAINING NETWORKS WITH GAs

Training a NN is an optimizationtask with the goal of
finding a setof weightsthat minimizesan error measue.
The searchspaceis high dimersional and, depeding on
the error measurejt may containnumepuslocal optima.
Somenetwork training algotithms, suchas baclpropaya-
tion (BP), usesomeform of gradient searchandmay get
trappel in local optima.

A straightfaward comhbnation of geneticalgorithms and
neurd networksis to usethe GA to searcHor weightsthat
malke the network perfam asdesired. The architectue of

the network is fixed by the userprior to the expaiment.

In this appioach, eachindividual in the GA repesentsa

vectorwith all the weightsof the network. We usedthese
two variants:

e Use the weightsfound by the GA without ary fur-
therrefinemat (Caudell& Dolan,1989; Montana&
Davis, 198; Whitley & Hanson198).

e Usethe GA to find a promising setof weightsfrom
which a gradient-basedmethodcanquickly reachan
optimum (Skinner& Broughton,1995. The motiva
tion is that GAs quickly identify promisingregions of
thesearchspacebput they do notfine-tuneparaneters
veryfast.



(d)

(e)

(f)

Figurel: Exanpleradiosources(a)-(b) Bent-dolles,(c)-(d) Non-bentdoulles, (e)-f) Complex Sources

Theseappoachesare straightbrward and have produced
goodresults. However, sinceadjacentayersin a network
are usually fully conneted, the total number of weights
is O(n?), wheren is the numker of units. Longer indi-
viduds usually requre larger populations, which in turn
resultin higher compuational costs. The GA may be ef-
ficient for small networks, but this methodmay not scale
up well. Anothe drawvbackis the so-calledpermutatios
prodem (Radclife, 1990. The prodem is that by per
muting the hiddennodes of a network, the representation
of the weightsin the chromosomewould change but the
network is functionally the same.Somepermuationsmay
notbesuitablefor GAs becauserosseer might easilydis-
rupt favoratdle comhbnationsof weights.To amelioratethis
prodem, Thierensetal. (1991) suggesto placeincomirg
andoutgping weightsof a hiddennodenext to eachother
whichwastheencodhg we used.

3.2 FEATURE SELECTION

Besidessearchindgor weights,GAs may be usedto select
thefeatuesthatareinputto theNN. Thetrainingexanples
may containfeatues that are irrelevant to the classifica-
tion, but it is geneally unknown a priori whichfeatures are
relevart. Avoiding irrelevart featuesis desirale notonly

becausehey increasehesizeof the network andthetrain-

ing time, but alsobecaus¢hey mayreduceheaccuagy of

thenetwork.

Using GAsto selectfeaturesds straightfaward,usingwhat
is referedto asthewrappe apprach:the chranosomeof

the individuals containsone bit for eachfeature,andthe
valueof thebit determireswhethe thefeatue will beused
in the classification(Brill, Brown, & Martin, 1990; Broth-
erton& Simpson1999. Theindividualsareevaluged by
training the networks (with a predeterminedstructure)us-
ing thefeaturesubsetndicatedby the chronbsomeandus-
ing theresultingaccurag to calculatethefitness.

3.3 DESIGNING NETWORKS WITH GAs

As mertionedbefore, the topolagy of a network is crucial
to its performarce. If a network hastoo few nodesand
conrections,it may not be ableto learnthe requred con-
cept. On the otherhand if a network hastoo mary nodes
andconnetions, it may overfit the training dataand have
poorgenealization. Therearetwo basicapprachedo use
a GA to designthe topolagy of a NN: usea directencod

ing to specifyevery conrectionof thenetwork or evolve an

indirectspecificatiorof the conrectiity.

Thekey ideabehinddirectencodngsis thata neuralnet-
work mayberegardedasadirectedgraphwhereeachnoce
represets aneura andeachedgeis aconnetion. A com-
mon methal of represeting directedgrapts is with a bi-
nary conrection matrix: the i, j-th elementof the matrix
is oneif thereis anedgebetweemodesi andj, andzero
otherwise. The connetivity matrix canbe represetedin
a GA simply by corcatenatingts rows or columrs (Miller
etal., 1989 Belew etal., 199). Usingthis methal, Whit-
ley etal. (1990) shaved thatthe GA canfind topolagies
that learn fasterthan the typical fully-connectedfeedfa-



ward network. The GA canbe explicitly biasedto favor
smallernetworks, which canbetrainedfaster

A simplemetha to avoid specifying all the conrectionsis
to committo a particulartopolagy andlearnirg algorithm
andthenusethe GA to find the paraméer valuesthatcom-
pletethe network specification.For example with afully-
conrectedfeedfaward topdogy, the GA may searchfor
the nunber of layersandthe numker of neuonsperlayer.
Anothe exanple would beto codetheparametesof apar
ticular learningalgoiithm, suchasthe monmentumandthe
learningrate of BP (Belew et al., 199Q Marshall& Har
rison,1991). Of course this methodis constraind by the
initial chdce of topdogy andlearningalgorithm

Anothe apprachis to usea gramma to encoce rulesthat
govern the developmentof a network. Kitano (199) in-
trodwcedthe earliestgrammar-basedapprach. He useda
conrectivity matrixto representhenetwork, butinsteadof
encodng thematrixdirectlyin thechranosomethematrix
is generatedy a graphrewriting gramnar. The chrano-
somescontainrulesthatrewrite scalarelementsnto 2 x 2
matrices.

In this gramnar, there are 16 terminal symbolsthat are
2 x 2 binay matrices. Thereare 16 nonterminal sym-
bols, andtheruleshave theform n — m, wheren is one
of thescalamonterminalsandm is a2 x 2 matrix of non
terminals. Thereis an arbitrarily desigratedstartsymbd,
andthe numberof rewriting stepsis fixedby the user

To evaluatethe fithess,the rulesare decodecandthe con-
nectvity matrix is developed by applyirg all the rules
that matchnonterminal symbols. Then, the conrectiity
matrix is interpeted and the network is constrieted and
trainedwith BP.

Otherexampes of gramma-baseddevelgpmentalsystems
arethework of BoersandKuipe (1992) with Lindenrayer
systems, Gruaus “cellular encodig” method (Gruay
1992, andthe systemof Nolfi, ElIman,and Parisi (1994)
thatsimulatescell growth, migration, anddifferentiation.

4 EXPERIMENT S

This sectiondetailsthe experimentalmethals andthe re-
sultsthatwe obtairedwith six combnationsof neurad net-
worksandgeneticalgorithms.

The progamswerewritten in C+ andcompled with g++
version2.96. The experimentswere executedon a Linux
workstationwith dual 1.5 GHz Intel Xeon processorsand
512Mb of memoy.

All the GAs useda popuation of 50 individuals. We
useda simple GA with binaly encodimy, pairwisetourra-
mentselection,andmulti-paint cross@er. The numkber of

crosseer poirts wasvariedin eachexperimentaccoding
to thelengthof thechronbsomes]. In all casesthe prob
ability of cross@er was1, andthe probability of mutatian
wassetto 1/1. Theinitial popuation wasinitialized uni-
formly atrandon.

The expeimentsusedfeedfaward networks with onehid-
denlayer. All neursmsareconrectedto a “bias” unit with
constanbutpu of 1.0. Unlessspecifiedothewise,theout-
putunitsareconnectedo all thehiddenunits,whichin turn
areconnetedto all theinputs. In feedfaward opeation,
theunitscompue their netactivationas

d
net = g z;w; + wo,

i=1

whered is the number of inputsto the neurm, z; is anin-
put andw; is the correspading weight, wq is the weight
correspndirg to the“bias” unit. Eachunit emitsanoutput
accordng to f(net) = tanh(8 * net), whereg is a user
specifiedcoeficient. Simplebackpopagtionwasusedin
someof the experiments. The weightsfrom the hiddento
the output layer were updatedusing Awy; = nopy; =
n(tr — 2x) f' (netx)y;, wheren denoteghe learnirg rate,
k indexestheoutpu units, ¢, thedesiredoutput, z, theac-
tualoutpd, f' is thederivative of f, andy; is theoutpu of
the j-th hiddenunit. Theweightsfrom thei-th input to the
hidden layerwereupcdatedusing

iji =N lz wkjék] f’(netj)xi.

k=1

In all experiments eachfeaturen thedatawaslinearlynor
malizedto theintenal [—1, 1]. Thetype of galayy wasen-
codedin oneoutpu value(-1 for bentandl for non-kent).
Whenbackpopagtion was used,the exampes were pre-
sentedin randan order for 20 epocls. All the resultsre-
portedare averags over 10 runs of the algorithrrs. Com-
parisors are madeusing standard-testswith 95% confi-
dence.

4.1 FITNESS CALCULATION

Oneof the crucial designdecisionsfor the application of
GAs is the calculationof fitnessvaluesfor eachmemtler
of the population. Sincewe areinterestedn networks that
predid accuraely thetype of galaxiesnot usedin training
thefitnesscalculation mustincludean estimateof thegen-
eralizationability of the networks.

Thereare multiple waysto estimategenealization. Since
we do not have muchtraining data,hold-cut methals (di-

viding thedatainto trainingandtestingsetsandpertapsan
additioral validation set)arenot practicd To calculatethe



fitnesswe usedtheaccuray estimateof five-fdd crosswal-
idationtrials. In this method the dataD is dividedinto 5
non-ovelappingsets,D, ...Dy. At eachiterationi (from
1to5), thenetwork is trainedwith D\ D; andtestedon D.
A betterestimateof accuray would be to usean averag
of multiple crosswéidation expeiments,but we found the
costexcessve.

To correct for the unbalancedlistribution of bentandnon
bentexampesin our training data,we calculatethe accu-
ragy asthe geometic meanof the accuaciesof eachclass
of galaxy (bentand nonbent) (Kubat & Matwin, 1997).
Usingthe geanetric meangivesequalweightto the accu-
racieson bothtypesof galaxesin theoverall perormane.

4.2 TRAINING NETWORKS WITH GAs

We implementedthefirst of the methals describedn sec-
tion 3.1: the GA wasusedto find the network’s weights.
The network had 20 inputsthat correspondo eachof the
features in thedata,25 hidden nodesandoneoutput. Each
weightwasrepresentedwith 10 bits, andtherange of pos-
sibleweights was[—10, 10].

For this expeiment, the GA useda popuation of 50 in-
dividuals, eachwith a lengthof [ = 5510 bits (thereare
551 total weights). The nunber of crosseer points was
setat 25, andthe mutatian ratewas0.00A.8 (=~ 1/1). As
in all expeliments, pairwisetournanentselectionwithout
replacerentwasused.

The secondraining methoddescribedn section3.1is to
run BP usingtheweightsrepiesentedy theindividualsin
the GA to initialize the network. The network architectue
andGA paraneterswereidenticalto the previous expeii-
ment. As in all the expeiiments,20 epots of backpropa-
gationwereusedto train eachnetwork.

The entries WEIGHTS and WEIGHTS+BP in table 1
presenthe averageaccurayg of the bestnetworks found in

eachrun of the GA for thesetwo setsof expeiments. The
resultshighlightedin boldin thetablesarethe bestresults
andthosenot significantlyworsethanthe best(accoding
to thet-test,which maydetectmoredifferenceshanthere
actuallyexist). The addition of BP producesmodestim-

provementsin the overdl accurag, which are not signifi-

cantlybetterthanusingthe GA alone.

4.3 FEATURE SELECTION

Thenext combirationof GAsandNNsiis to usethe GA to
selectthe featuresthat will be usedto train the networks,
asdescribedn section3.2. As in previousexperimentswe
setthe nunber of hiddenunits to 25, the learningrateto
0.1 andg to 0.4. The networksweretrainedfor 20 epodis.

Ourdatahas20featuresandtherefoethechranosomesn

the GA are20 bitslong. The GA usedonepointcrosseer
andthe sameparametes asin previous experiments. The
accuray resultsarelabeledFEATURE SEL andaresignifi-
cantlybetterthanthe otherresultsin table1.

The GAs corsistentlyselectedabou half of the features,
andfrequently selectedeatures that appearo be relevant

to the identificationof bent-aublegalaxiessuchassym-

metrymeasuresndangles.

4.4 DESIGNING NETWORKS WITH GAs

In thefirst application of GAs to network design,the GA

is usedto find the number of hiddenunits, the paraneters
for backpopagdion, andtherange of initial weightsasde-
scribedin section3.3. Thelearningratewasencaledwith

four bits andthe range of possiblevalueswas[0,1]. The
coeficient g for the activation function wasalsoencode

with four bits andits rangewas|0, 1]. Theupper andlower
range for the initial weightswere encodd with five bits
eachandwereallowedto vary in [—10,0] and[0, 10], re-
spectvely. Finally, the numker of hiddenunits wasrepie-
sentedwvith sevenbits andcouldtake valuesin [0, 127].

After extracting the paraméersfrom achronmosomea net-
work wasbuilt andinitialized accordimg to the paraneters
andtrainedwith 20 epochsof BP. Thereis no explicit bias
to prefer smallernetworks, but thereis animplicit biasto-
ward networks that canlearn quickly, sincewe are using
only 20 epocls of BP. It is probable that small networks
learnfasterthanlargerones,andsoit is likely thatthe GA
favorssmallnetworks.

TheGA usedtwo-poirt cross@er andthe sameparaneters
asprevious experiments. The accurcy resultsarelabeled
PARAMETERS in tablel. Onaveragethebestlearningrate
found by the GA was 0.8 (with 0.06std. erra), whichis
highe thanthe usualrecommendatio of 0.1-0.2 (Duda,
Hart, & Stork,2007). Perhapdhelearningrateis high be-
causeof the implicit biasfor learningquicky. This bias
may also explain the average numbe of hiddenunits be-
ing relatively small at 156 (std. error 2.8). The average
B was 0.16 (0.01), andthe rangeof initial weightswas
[—3.51,3.45] (bath with std.errorsof 0.4).

The next expaimentusedthe GA to searchfor a conne-
tivity matrixasdescribe in section3.3. We fixedthenum-

berof hiddenunitsto 25, thelearningrateto 0.1 andg to
0.4. Theneurmsarenumberedcorsecutvely startingwith

the inputs and followed by the hidden units and outputs.
The comectvity matrix is encodedby concateating its
rows. Sincewe allow directconrectionsbetweertheinputs
andtheoutpus, thestringlengthis (hidden + outputs) *
inputs + hidden x outputs = (26 x 20) 4 (25 * 1) = 545
bits. For this longer string,we usel0 crossa@er points,and
thesameGA parametes asbefore.



We also implementedKitano’s gragh rewriting grammar
method We limited the numbe of rewriting stepsto 6,
resultingin networks with atmost64 units. Sincethechro
mosonesencoe four 2 x 2 binaly matricesfor eachof the
16 rules, the string lengthis 256 bits. The GAs usedfive
crosseer points.

4.5 COMPARISON AND DISCUSSION

Tablel summaizestheresultsobtainedwith eachmethod
Theresultsshav largedifferenceamonghevariousmeth-
odsin the accurayg ratefor nonbentsandthe overall ac-
curag. Clearly, the featue selectionmethodhadthe best
overall accuray andthebestaccuagy onthenon-bents.

We also perfamed numeras experimentswith networks
designedyy hand. The bestparanetersthatwe couldfind
for 20 epocls of backpopagéion werethoseusedin the
expeiimentswith the GAs: 8 = 0.1, thelearningratewas
0.4,andthe numter of hiddenwas25. The averag of 10
10-fold crossalidation experimentgesultedn anaccurag
on the non-kentsof only 16.4%4 (1.7) andon the bentsis
99.M% (0.16. The overall accurag estimatedwith the
geonetric meanis a disappinting 23.41% (2.(2).

Increasingthe numker of trainingepodisto 100raisedthe
standardthe geanetric meanaccurag to 72.6%6 (0.3).
The accurag on the nonbentsalso improved to 56.7®%6,
while the accurag on the bents deceasedslightly to
94.38%.

5 CONCLUSIONS

This pape presentec conparisonof six combirationsof
GAsandNNsfor theidentificationof bentdoulde galaxies
in theFIRST surwey. Ourexpeiimentssuggesthat,for this
applicatian, somecombirationsof GAs andNNs canpro-
duceaccuratelassifierghatarecompetitive with networks
designedby hand.For ourapplicdion, we foundfew differ-
encesamory the GA andNN combirationsthat we tried.
Theonly consistentlybestmethal wasto usethe GA to se-
lectthefeatuesusedto train the networks, which suggsts
thatsomeof thefeaturesn thetrainingsetareirrelevant.

Thereareseveralavenuego extendthis work. The highly

unbdancedrainingsetpreseis somedifficultiesthatcodd

be avoided or amelioratedby includng more exanples
of the minarity class. Extendirg the training setis non

trivial, becagethelabelingis subjectve anddisagreerants
amory theexpets arecomman.

Other optimization techniaqies, evolutionary and tradi-
tional, canbe usedto train NNs. In this paperwe useda
simplegeretic algorithmwith a binaryencoding, but other
evolutionaryalgorithmsoperatenvectasof realnumkers,
which canbe directly mapped to the network’s weightsor

theBP parametes (but notto aconrectivity matrix,agram
mar, or a featureselectionapplication. Thereare other
comhbinationsof GAs andNNs thatwe did notincludein
this study but appeaiprormising. For instance sinceevo-
lutionary algoiithms usea population of networks, a nat-
ural extensia of this work would be to useevolutionary
algorithms to createensembleshat combire several NNs
to improve theaccungy of classifications.

Themaindisadwarntageof usinggeneticalgoithmsin com-
binationwith neual networks is thelongcompuationtime

required. This canbe an obstacleto applying thesetech-
nigues to larger datasets,but thereare numerais alterna-
tivesto improvetheperformarceof geneticalgoiithms. For

instanceyve couldappraimatethefitnessevaluationusing
samplingor we canexploit theinheently parallelnatureof

GAs usingmultiple processa.
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